In today's fast-paced digital landscape, waiting hours or even minutes for Reddit insights can mean missing critical opportunities. Real-time monitoring transforms how organizations detect brand mentions, track emerging trends, and respond to community sentiment as events unfold. This comprehensive guide walks you through building production-ready streaming systems for Reddit data.
Research shows that brand reputation crises escalate 10x faster on social platforms than traditional media. The first 60 minutes are critical for damage control. Real-time monitoring gives you the edge to respond before issues go viral.
Understanding Real-Time Reddit Architecture
Building a real-time Reddit monitoring system requires understanding the data flow from Reddit's servers to your alerting pipeline. Unlike batch processing, streaming systems must handle continuous data flows with minimal latency while maintaining reliability and scalability.
Streaming Architecture Overview
Key Components
| Component | Purpose | Technology Options | Latency Target |
|---|---|---|---|
| Data Ingestion | Collect posts/comments from Reddit | PRAW Streaming, Pushshift | < 30 seconds |
| Message Queue | Buffer and distribute events | Kafka, Redis Streams, RabbitMQ | < 100ms |
| Stream Processor | Transform and enrich data | Flink, Spark Streaming, KSQL | < 500ms |
| Analytics Engine | ML inference, sentiment analysis | TensorFlow Serving, ONNX | < 200ms |
| Time-Series DB | Store metrics and events | TimescaleDB, InfluxDB, QuestDB | < 50ms |
| Alert System | Trigger notifications | Custom, PagerDuty, Slack | < 1 second |
Setting Up Reddit Streaming with PRAW
PRAW (Python Reddit API Wrapper) provides built-in streaming capabilities that continuously monitor subreddits for new posts and comments. Let's build a robust streaming collector.
Basic Stream Collector
import praw
import json
import logging
from datetime import datetime
from typing import Generator, Dict, Any
from dataclasses import dataclass, asdict
import redis
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class RedditEvent:
"""Standardized Reddit event structure"""
event_id: str
event_type: str # 'post' or 'comment'
subreddit: str
author: str
title: str
content: str
url: str
score: int
created_utc: float
parent_id: str = None
def to_dict(self) -> Dict[str, Any]:
return asdict(self)
def to_json(self) -> str:
return json.dumps(self.to_dict())
class RedditStreamCollector:
"""Real-time Reddit stream collector with error handling"""
def __init__(self,
client_id: str,
client_secret: str,
user_agent: str,
redis_url: str = 'redis://localhost:6379'):
self.reddit = praw.Reddit(
client_id=client_id,
client_secret=client_secret,
user_agent=user_agent
)
# Redis for message queue
self.redis_client = redis.from_url(redis_url)
self.stream_key = 'reddit:stream:events'
# Statistics
self.stats = {
'posts_processed': 0,
'comments_processed': 0,
'errors': 0,
'start_time': datetime.now()
}
def _create_post_event(self, submission) -> RedditEvent:
"""Convert PRAW submission to event"""
return RedditEvent(
event_id=submission.id,
event_type='post',
subreddit=submission.subreddit.display_name,
author=str(submission.author) if submission.author else '[deleted]',
title=submission.title,
content=submission.selftext[:5000], # Truncate long posts
url=submission.url,
score=submission.score,
created_utc=submission.created_utc
)
def _create_comment_event(self, comment) -> RedditEvent:
"""Convert PRAW comment to event"""
return RedditEvent(
event_id=comment.id,
event_type='comment',
subreddit=comment.subreddit.display_name,
author=str(comment.author) if comment.author else '[deleted]',
title='',
content=comment.body[:5000],
url=f'https://reddit.com{comment.permalink}',
score=comment.score,
created_utc=comment.created_utc,
parent_id=comment.parent_id
)
def stream_subreddits(self,
subreddits: list[str],
include_comments: bool = True) -> Generator:
"""
Stream posts and comments from multiple subreddits
Args:
subreddits: List of subreddit names to monitor
include_comments: Whether to also stream comments
"""
subreddit_str = '+'.join(subreddits)
subreddit = self.reddit.subreddit(subreddit_str)
logger.info(f"Starting stream for: {subreddit_str}")
if include_comments:
# Use stream.all() for both posts and comments
for item in subreddit.stream.submissions(skip_existing=True):
try:
event = self._create_post_event(item)
self.stats['posts_processed'] += 1
yield event
except Exception as e:
self.stats['errors'] += 1
logger.error(f"Error processing post: {e}")
else:
for submission in subreddit.stream.submissions(skip_existing=True):
try:
event = self._create_post_event(submission)
self.stats['posts_processed'] += 1
yield event
except Exception as e:
self.stats['errors'] += 1
logger.error(f"Error processing post: {e}")
def publish_to_redis(self, event: RedditEvent):
"""Publish event to Redis stream"""
try:
self.redis_client.xadd(
self.stream_key,
{'data': event.to_json()},
maxlen=100000 # Keep last 100k events
)
except Exception as e:
logger.error(f"Redis publish error: {e}")
def get_stats(self) -> Dict:
"""Get current streaming statistics"""
runtime = (datetime.now() - self.stats['start_time']).seconds
total = self.stats['posts_processed'] + self.stats['comments_processed']
return {
**self.stats,
'runtime_seconds': runtime,
'events_per_second': total / max(runtime, 1)
}
Multi-Threaded Streaming
For higher throughput, we can run multiple streams concurrently - one for posts and one for comments across different subreddit groups.
import threading
import queue
from concurrent.futures import ThreadPoolExecutor
import signal
import sys
class MultiStreamManager:
"""Manage multiple Reddit streams concurrently"""
def __init__(self, collector: RedditStreamCollector, max_workers: int = 4):
self.collector = collector
self.max_workers = max_workers
self.event_queue = queue.Queue(maxsize=10000)
self.running = True
self.threads = []
# Handle graceful shutdown
signal.signal(signal.SIGINT, self._signal_handler)
signal.signal(signal.SIGTERM, self._signal_handler)
def _signal_handler(self, signum, frame):
"""Handle shutdown signals"""
logger.info("Shutdown signal received...")
self.running = False
def _stream_worker(self, subreddits: list[str], stream_type: str):
"""Worker thread for streaming"""
subreddit_str = '+'.join(subreddits)
subreddit = self.collector.reddit.subreddit(subreddit_str)
logger.info(f"Starting {stream_type} stream for: {subreddits}")
try:
if stream_type == 'posts':
stream = subreddit.stream.submissions(skip_existing=True)
else:
stream = subreddit.stream.comments(skip_existing=True)
for item in stream:
if not self.running:
break
try:
if stream_type == 'posts':
event = self.collector._create_post_event(item)
else:
event = self.collector._create_comment_event(item)
# Non-blocking put with timeout
self.event_queue.put(event, timeout=1.0)
except queue.Full:
logger.warning("Event queue full, dropping event")
except Exception as e:
logger.error(f"Error in {stream_type} stream: {e}")
except Exception as e:
logger.error(f"Stream worker failed: {e}")
def _processor_worker(self, processor_fn):
"""Worker to process events from queue"""
while self.running or not self.event_queue.empty():
try:
event = self.event_queue.get(timeout=1.0)
processor_fn(event)
self.event_queue.task_done()
except queue.Empty:
continue
except Exception as e:
logger.error(f"Processor error: {e}")
def start(self,
subreddit_groups: list[list[str]],
processor_fn,
include_comments: bool = True,
num_processors: int = 2):
"""
Start multi-threaded streaming
Args:
subreddit_groups: List of subreddit lists to stream
processor_fn: Function to process each event
include_comments: Whether to stream comments
num_processors: Number of processor threads
"""
# Start post streams
for subreddits in subreddit_groups:
t = threading.Thread(
target=self._stream_worker,
args=(subreddits, 'posts'),
daemon=True
)
t.start()
self.threads.append(t)
# Start comment streams if enabled
if include_comments:
for subreddits in subreddit_groups:
t = threading.Thread(
target=self._stream_worker,
args=(subreddits, 'comments'),
daemon=True
)
t.start()
self.threads.append(t)
# Start processor threads
for _ in range(num_processors):
t = threading.Thread(
target=self._processor_worker,
args=(processor_fn,),
daemon=True
)
t.start()
self.threads.append(t)
logger.info(f"Started {len(self.threads)} threads")
# Keep main thread alive
try:
while self.running:
threading.Event().wait(1.0)
except KeyboardInterrupt:
self.running = False
logger.info("Waiting for threads to finish...")
for t in self.threads:
t.join(timeout=5.0)
Building the Event Processing Pipeline
Raw events need transformation, enrichment, and analysis before they're useful. Let's build a modular processing pipeline that can filter, transform, and route events efficiently.
Pipeline Architecture
from abc import ABC, abstractmethod
from typing import Optional, List, Callable
import re
from transformers import pipeline
import numpy as np
class PipelineStage(ABC):
"""Base class for pipeline stages"""
@abstractmethod
def process(self, event: RedditEvent) -> Optional[RedditEvent]:
"""Process event, return None to filter out"""
pass
class KeywordFilter(PipelineStage):
"""Filter events by keywords"""
def __init__(self,
keywords: List[str],
exclude_keywords: List[str] = None,
case_sensitive: bool = False):
self.keywords = keywords
self.exclude_keywords = exclude_keywords or []
self.case_sensitive = case_sensitive
# Compile patterns for efficiency
flags = 0 if case_sensitive else re.IGNORECASE
self.include_pattern = re.compile(
'|'.join(re.escape(kw) for kw in keywords),
flags
)
if exclude_keywords:
self.exclude_pattern = re.compile(
'|'.join(re.escape(kw) for kw in exclude_keywords),
flags
)
else:
self.exclude_pattern = None
def process(self, event: RedditEvent) -> Optional[RedditEvent]:
text = f"{event.title} {event.content}"
# Check exclusions first
if self.exclude_pattern and self.exclude_pattern.search(text):
return None
# Check inclusions
if self.include_pattern.search(text):
return event
return None
class SentimentAnalyzer(PipelineStage):
"""Add sentiment scores to events"""
def __init__(self, model_name: str = 'cardiffnlp/twitter-roberta-base-sentiment'):
self.analyzer = pipeline(
'sentiment-analysis',
model=model_name,
device=0 if torch.cuda.is_available() else -1
)
self.label_map = {
'LABEL_0': 'negative',
'LABEL_1': 'neutral',
'LABEL_2': 'positive'
}
def process(self, event: RedditEvent) -> RedditEvent:
text = f"{event.title} {event.content}"[:512] # Model limit
try:
result = self.analyzer(text)[0]
event.sentiment = self.label_map.get(result['label'], result['label'])
event.sentiment_score = result['score']
except Exception as e:
event.sentiment = 'unknown'
event.sentiment_score = 0.0
return event
class UrgencyClassifier(PipelineStage):
"""Classify event urgency for alerting"""
URGENT_PATTERNS = [
r'\b(urgent|emergency|asap|immediately|critical|crisis)\b',
r'\b(lawsuit|legal action|sue|attorney)\b',
r'\b(scam|fraud|hack|breach|vulnerability)\b',
r'\b(recall|warning|danger|unsafe)\b',
]
HIGH_PATTERNS = [
r'\b(complaint|issue|problem|broken|failed)\b',
r'\b(disappointed|frustrated|angry|upset)\b',
r'\b(refund|return|cancel)\b',
]
def __init__(self):
self.urgent_regex = re.compile(
'|'.join(self.URGENT_PATTERNS),
re.IGNORECASE
)
self.high_regex = re.compile(
'|'.join(self.HIGH_PATTERNS),
re.IGNORECASE
)
def process(self, event: RedditEvent) -> RedditEvent:
text = f"{event.title} {event.content}"
if self.urgent_regex.search(text):
event.urgency = 'urgent'
event.urgency_score = 1.0
elif self.high_regex.search(text):
event.urgency = 'high'
event.urgency_score = 0.7
else:
event.urgency = 'normal'
event.urgency_score = 0.3
return event
class EventPipeline:
"""Composable event processing pipeline"""
def __init__(self):
self.stages: List[PipelineStage] = []
self.processed_count = 0
self.filtered_count = 0
def add_stage(self, stage: PipelineStage) -> 'EventPipeline':
"""Add processing stage (fluent API)"""
self.stages.append(stage)
return self
def process(self, event: RedditEvent) -> Optional[RedditEvent]:
"""Run event through all pipeline stages"""
for stage in self.stages:
if event is None:
self.filtered_count += 1
return None
event = stage.process(event)
if event:
self.processed_count += 1
return event
# Example usage
def create_brand_monitoring_pipeline(brand_name: str) -> EventPipeline:
"""Create a pipeline for brand monitoring"""
return (EventPipeline()
.add_stage(KeywordFilter(
keywords=[brand_name, f"@{brand_name}", f"#{brand_name}"],
exclude_keywords=['spam', 'giveaway', 'follow for follow']
))
.add_stage(SentimentAnalyzer())
.add_stage(UrgencyClassifier())
)
Implementing Real-Time Alerts
The alerting system is where real-time monitoring delivers value. Let's build a flexible alerting framework that supports multiple channels and intelligent throttling.
Alert System Architecture
import asyncio
import aiohttp
from typing import Dict, List, Optional
from datetime import datetime, timedelta
from collections import defaultdict
from dataclasses import dataclass
from enum import Enum
class AlertPriority(Enum):
LOW = 1
MEDIUM = 2
HIGH = 3
URGENT = 4
@dataclass
class Alert:
event: RedditEvent
priority: AlertPriority
rule_name: str
created_at: datetime
message: str
class AlertRule:
"""Define conditions for generating alerts"""
def __init__(self,
name: str,
condition: Callable[[RedditEvent], bool],
priority: AlertPriority,
message_template: str,
cooldown_minutes: int = 5):
self.name = name
self.condition = condition
self.priority = priority
self.message_template = message_template
self.cooldown = timedelta(minutes=cooldown_minutes)
self.last_triggered: Dict[str, datetime] = {}
def check(self, event: RedditEvent) -> Optional[Alert]:
"""Check if event triggers this rule"""
# Check cooldown per subreddit
cooldown_key = f"{self.name}:{event.subreddit}"
if cooldown_key in self.last_triggered:
if datetime.now() - self.last_triggered[cooldown_key] < self.cooldown:
return None
if self.condition(event):
self.last_triggered[cooldown_key] = datetime.now()
message = self.message_template.format(
subreddit=event.subreddit,
author=event.author,
title=event.title,
url=event.url,
sentiment=getattr(event, 'sentiment', 'unknown'),
urgency=getattr(event, 'urgency', 'normal')
)
return Alert(
event=event,
priority=self.priority,
rule_name=self.name,
created_at=datetime.now(),
message=message
)
return None
class AlertChannel(ABC):
"""Base class for alert delivery channels"""
@abstractmethod
async def send(self, alert: Alert):
pass
class SlackChannel(AlertChannel):
"""Send alerts to Slack"""
PRIORITY_COLORS = {
AlertPriority.LOW: '#36a64f',
AlertPriority.MEDIUM: '#ffcc00',
AlertPriority.HIGH: '#ff6600',
AlertPriority.URGENT: '#ff0000',
}
def __init__(self, webhook_url: str, channel: str = None):
self.webhook_url = webhook_url
self.channel = channel
async def send(self, alert: Alert):
payload = {
'attachments': [{
'color': self.PRIORITY_COLORS[alert.priority],
'title': f"🚨 {alert.rule_name}",
'text': alert.message,
'fields': [
{'title': 'Subreddit', 'value': f"r/{alert.event.subreddit}", 'short': True},
{'title': 'Priority', 'value': alert.priority.name, 'short': True},
],
'actions': [{
'type': 'button',
'text': 'View on Reddit',
'url': alert.event.url
}],
'footer': f"Reddit Monitor | {alert.created_at.isoformat()}"
}]
}
if self.channel:
payload['channel'] = self.channel
async with aiohttp.ClientSession() as session:
async with session.post(self.webhook_url, json=payload) as response:
if response.status != 200:
logger.error(f"Slack alert failed: {await response.text()}")
class WebhookChannel(AlertChannel):
"""Send alerts to custom webhook"""
def __init__(self, url: str, headers: Dict = None):
self.url = url
self.headers = headers or {}
async def send(self, alert: Alert):
payload = {
'rule': alert.rule_name,
'priority': alert.priority.name,
'message': alert.message,
'event': alert.event.to_dict(),
'timestamp': alert.created_at.isoformat()
}
async with aiohttp.ClientSession() as session:
async with session.post(
self.url,
json=payload,
headers=self.headers
) as response:
if response.status >= 400:
logger.error(f"Webhook alert failed: {response.status}")
class AlertManager:
"""Manage alert rules and delivery"""
def __init__(self):
self.rules: List[AlertRule] = []
self.channels: Dict[AlertPriority, List[AlertChannel]] = defaultdict(list)
self.alert_history: List[Alert] = []
self.max_history = 1000
def add_rule(self, rule: AlertRule):
"""Add an alert rule"""
self.rules.append(rule)
def add_channel(self, channel: AlertChannel, min_priority: AlertPriority):
"""Add delivery channel for priority level and above"""
for priority in AlertPriority:
if priority.value >= min_priority.value:
self.channels[priority].append(channel)
async def process_event(self, event: RedditEvent):
"""Check event against rules and send alerts"""
for rule in self.rules:
alert = rule.check(event)
if alert:
# Store in history
self.alert_history.append(alert)
if len(self.alert_history) > self.max_history:
self.alert_history.pop(0)
# Send to appropriate channels
channels = self.channels[alert.priority]
if channels:
tasks = [channel.send(alert) for channel in channels]
await asyncio.gather(*tasks, return_exceptions=True)
logger.info(f"Alert triggered: {alert.rule_name} ({alert.priority.name})")
Configuring Alert Rules
def create_brand_alert_rules(brand_name: str) -> List[AlertRule]:
"""Create standard brand monitoring alert rules"""
brand_pattern = re.compile(rf'\b{re.escape(brand_name)}\b', re.IGNORECASE)
return [
# Crisis Detection
AlertRule(
name="Crisis Detection",
condition=lambda e: (
brand_pattern.search(f"{e.title} {e.content}") and
getattr(e, 'urgency', '') == 'urgent' and
getattr(e, 'sentiment', '') == 'negative'
),
priority=AlertPriority.URGENT,
message_template="""
🚨 **URGENT: Potential Crisis Detected**
**Post:** {title}
**Subreddit:** r/{subreddit}
**Author:** u/{author}
**Sentiment:** {sentiment}
This post matches crisis keywords and has negative sentiment.
Immediate review recommended.
[View Post]({url})
""",
cooldown_minutes=1
),
# Negative Sentiment Spike
AlertRule(
name="Negative Mention",
condition=lambda e: (
brand_pattern.search(f"{e.title} {e.content}") and
getattr(e, 'sentiment', '') == 'negative' and
getattr(e, 'sentiment_score', 0) > 0.8
),
priority=AlertPriority.HIGH,
message_template="""
⚠️ **Negative Brand Mention**
**Post:** {title}
**Subreddit:** r/{subreddit}
**Sentiment Score:** High negative
Consider engaging with this post.
[View Post]({url})
""",
cooldown_minutes=10
),
# Viral Potential
AlertRule(
name="Viral Post",
condition=lambda e: (
brand_pattern.search(f"{e.title} {e.content}") and
e.score >= 100 and
e.event_type == 'post'
),
priority=AlertPriority.MEDIUM,
message_template="""
📈 **High-Engagement Brand Mention**
**Post:** {title}
**Subreddit:** r/{subreddit}
**Score:** {score}+
This post is gaining traction.
[View Post]({url})
""",
cooldown_minutes=30
),
# Any Brand Mention (for logging)
AlertRule(
name="Brand Mention",
condition=lambda e: brand_pattern.search(f"{e.title} {e.content}"),
priority=AlertPriority.LOW,
message_template="New mention in r/{subreddit}: {title}",
cooldown_minutes=0 # No cooldown for logging
),
]
Using Redis Streams for Scalable Messaging
For production systems handling high volumes, Redis Streams provides a robust message queue with consumer groups for horizontal scaling.
Redis Streams Consumer
import redis
import json
import asyncio
from typing import Callable, List
import uuid
class RedisStreamConsumer:
"""Scalable Redis Streams consumer with consumer groups"""
def __init__(self,
redis_url: str,
stream_key: str,
group_name: str,
consumer_name: str = None):
self.redis_client = redis.from_url(redis_url)
self.stream_key = stream_key
self.group_name = group_name
self.consumer_name = consumer_name or f"consumer-{uuid.uuid4().hex[:8]}"
# Create consumer group if it doesn't exist
try:
self.redis_client.xgroup_create(
stream_key,
group_name,
id='0',
mkstream=True
)
except redis.exceptions.ResponseError as e:
if 'BUSYGROUP' not in str(e):
raise
def consume(self,
processor: Callable[[RedditEvent], None],
batch_size: int = 10,
block_ms: int = 5000):
"""
Consume events from Redis Stream
Args:
processor: Function to process each event
batch_size: Number of events to read at once
block_ms: How long to block waiting for new events
"""
logger.info(f"Starting consumer {self.consumer_name} in group {self.group_name}")
while True:
try:
# Read new events
events = self.redis_client.xreadgroup(
groupname=self.group_name,
consumername=self.consumer_name,
streams={self.stream_key: '>'},
count=batch_size,
block=block_ms
)
if not events:
continue
for stream_name, messages in events:
for message_id, data in messages:
try:
# Parse event
event_data = json.loads(data[b'data'])
event = RedditEvent(**event_data)
# Process
processor(event)
# Acknowledge
self.redis_client.xack(
self.stream_key,
self.group_name,
message_id
)
except Exception as e:
logger.error(f"Error processing message {message_id}: {e}")
# Don't ack - will be reprocessed
except KeyboardInterrupt:
logger.info("Consumer shutting down...")
break
except Exception as e:
logger.error(f"Consumer error: {e}")
asyncio.sleep(1)
def get_pending_count(self) -> int:
"""Get count of unprocessed messages"""
info = self.redis_client.xpending(self.stream_key, self.group_name)
return info['pending'] if info else 0
def claim_stale_messages(self, min_idle_ms: int = 60000) -> int:
"""Claim messages from dead consumers"""
claimed = self.redis_client.xautoclaim(
self.stream_key,
self.group_name,
self.consumer_name,
min_idle_time=min_idle_ms,
count=100
)
return len(claimed[1]) if claimed else 0
Real-Time Metrics and Monitoring
Monitoring your monitoring system is essential. Let's build real-time metrics collection and visualization capabilities.
Metrics Collection
from prometheus_client import Counter, Gauge, Histogram, start_http_server
from datetime import datetime
import time
class StreamingMetrics:
"""Prometheus metrics for streaming system"""
def __init__(self, port: int = 8000):
# Event counters
self.events_total = Counter(
'reddit_events_total',
'Total Reddit events processed',
['event_type', 'subreddit']
)
self.events_filtered = Counter(
'reddit_events_filtered_total',
'Events filtered out by pipeline',
['stage']
)
# Alert counters
self.alerts_total = Counter(
'reddit_alerts_total',
'Total alerts generated',
['rule', 'priority']
)
self.alerts_sent = Counter(
'reddit_alerts_sent_total',
'Alerts sent to channels',
['channel', 'status']
)
# Latency metrics
self.processing_latency = Histogram(
'reddit_processing_latency_seconds',
'Event processing latency',
buckets=[.01, .05, .1, .25, .5, 1.0, 2.5, 5.0]
)
self.event_lag = Histogram(
'reddit_event_lag_seconds',
'Time between event creation and processing',
buckets=[1, 5, 10, 30, 60, 120, 300]
)
# Queue metrics
self.queue_size = Gauge(
'reddit_queue_size',
'Current event queue size'
)
self.pending_messages = Gauge(
'reddit_pending_messages',
'Unacknowledged messages in Redis'
)
# Sentiment distribution
self.sentiment_counts = Counter(
'reddit_sentiment_total',
'Events by sentiment',
['sentiment', 'subreddit']
)
# Start metrics server
start_http_server(port)
logger.info(f"Metrics server started on port {port}")
def record_event(self, event: RedditEvent):
"""Record event metrics"""
self.events_total.labels(
event_type=event.event_type,
subreddit=event.subreddit
).inc()
# Calculate lag
lag = time.time() - event.created_utc
self.event_lag.observe(lag)
# Record sentiment if available
if hasattr(event, 'sentiment'):
self.sentiment_counts.labels(
sentiment=event.sentiment,
subreddit=event.subreddit
).inc()
def record_alert(self, alert: Alert):
"""Record alert metrics"""
self.alerts_total.labels(
rule=alert.rule_name,
priority=alert.priority.name
).inc()
@contextmanager
def measure_processing_time(self):
"""Context manager to measure processing time"""
start = time.time()
yield
self.processing_latency.observe(time.time() - start)
Complete Real-Time Monitoring System
Let's bring all components together into a complete, production-ready monitoring system.
Main Application
import asyncio
import os
from dotenv import load_dotenv
load_dotenv()
async def main():
"""Main entry point for Reddit monitoring system"""
# Configuration
config = {
'reddit': {
'client_id': os.getenv('REDDIT_CLIENT_ID'),
'client_secret': os.getenv('REDDIT_CLIENT_SECRET'),
'user_agent': os.getenv('REDDIT_USER_AGENT', 'RedditMonitor/1.0')
},
'redis_url': os.getenv('REDIS_URL', 'redis://localhost:6379'),
'slack_webhook': os.getenv('SLACK_WEBHOOK_URL'),
'brand_name': os.getenv('BRAND_NAME', 'MyBrand'),
'subreddits': os.getenv('SUBREDDITS', 'technology+programming').split('+')
}
# Initialize components
metrics = StreamingMetrics(port=8000)
collector = RedditStreamCollector(
client_id=config['reddit']['client_id'],
client_secret=config['reddit']['client_secret'],
user_agent=config['reddit']['user_agent'],
redis_url=config['redis_url']
)
# Build processing pipeline
pipeline = create_brand_monitoring_pipeline(config['brand_name'])
# Setup alert manager
alert_manager = AlertManager()
# Add alert rules
for rule in create_brand_alert_rules(config['brand_name']):
alert_manager.add_rule(rule)
# Add alert channels
if config['slack_webhook']:
slack_channel = SlackChannel(config['slack_webhook'])
alert_manager.add_channel(slack_channel, AlertPriority.MEDIUM)
# Event processor function
async def process_event(event: RedditEvent):
with metrics.measure_processing_time():
# Run through pipeline
processed_event = pipeline.process(event)
if processed_event:
metrics.record_event(processed_event)
await alert_manager.process_event(processed_event)
# Start multi-threaded streaming
stream_manager = MultiStreamManager(collector)
# Wrap async processor for threading
def sync_processor(event):
asyncio.run(process_event(event))
logger.info("Starting Reddit monitoring system...")
logger.info(f"Monitoring brand: {config['brand_name']}")
logger.info(f"Watching subreddits: {config['subreddits']}")
# Start streaming
stream_manager.start(
subreddit_groups=[config['subreddits']],
processor_fn=sync_processor,
include_comments=True,
num_processors=4
)
if __name__ == '__main__':
asyncio.run(main())
Skip the Infrastructure Complexity
Building and maintaining real-time monitoring infrastructure requires significant investment. reddapi.dev provides instant semantic search across Reddit with built-in sentiment analysis, trend detection, and API access - no infrastructure needed.
Try Real-Time Reddit SearchAdvanced Techniques
Anomaly Detection
Detect unusual patterns in real-time to catch emerging issues before they escalate.
import numpy as np
from collections import deque
from scipy import stats
class RealTimeAnomalyDetector:
"""Detect anomalies in streaming metrics"""
def __init__(self,
window_size: int = 100,
z_threshold: float = 3.0,
min_samples: int = 20):
self.window_size = window_size
self.z_threshold = z_threshold
self.min_samples = min_samples
self.metrics: Dict[str, deque] = defaultdict(
lambda: deque(maxlen=window_size)
)
def check_volume_anomaly(self,
metric_name: str,
value: float) -> Optional[Dict]:
"""Check if current value is anomalous"""
history = self.metrics[metric_name]
history.append(value)
if len(history) < self.min_samples:
return None
values = np.array(history)
mean = np.mean(values[:-1]) # Exclude current
std = np.std(values[:-1])
if std == 0:
return None
z_score = (value - mean) / std
if abs(z_score) > self.z_threshold:
return {
'metric': metric_name,
'value': value,
'z_score': z_score,
'mean': mean,
'std': std,
'direction': 'spike' if z_score > 0 else 'drop'
}
return None
def check_sentiment_shift(self,
subreddit: str,
sentiment_scores: List[float]) -> Optional[Dict]:
"""Detect sudden sentiment shifts"""
metric_name = f"sentiment:{subreddit}"
avg_sentiment = np.mean(sentiment_scores)
return self.check_volume_anomaly(metric_name, avg_sentiment)
Performance Comparison
| Approach | Latency | Throughput | Scalability | Complexity |
|---|---|---|---|---|
| Single Thread PRAW | 5-30 seconds | ~10 events/sec | Limited | Low |
| Multi-Thread PRAW | 5-30 seconds | ~50 events/sec | Moderate | Medium |
| Redis Streams | 1-5 seconds | ~1000 events/sec | High | Medium |
| Kafka + Flink | <1 second | 10,000+ events/sec | Very High | High |
| reddapi.dev API | ~500ms | Based on plan | Managed | Very Low |
Frequently Asked Questions
Using PRAW's streaming API, you can detect new posts and comments within 5-30 seconds of their creation on Reddit. With optimized infrastructure using Redis Streams or Kafka, you can reduce this to under 5 seconds. The main bottleneck is Reddit's API update frequency rather than your processing pipeline.
Reddit's OAuth API allows 60 requests per minute for most endpoints. However, the streaming endpoints (stream.submissions, stream.comments) are more lenient as they maintain long-lived connections. You can monitor multiple subreddits simultaneously by joining them with '+' (e.g., 'technology+programming'). For higher volume needs, consider services like reddapi.dev which provide optimized access.
Use message queues like Redis Streams or Apache Kafka that persist events until acknowledged. Implement consumer groups for horizontal scaling and automatic failover. Store message offsets so consumers can resume from their last position after restart. Additionally, implement dead letter queues for events that repeatedly fail processing.
A production setup typically requires: 1) Application servers for stream collection (2-4 instances for redundancy), 2) Message queue cluster (Redis Sentinel or Kafka), 3) Time-series database for metrics (InfluxDB or TimescaleDB), 4) Monitoring and alerting tools (Prometheus + Grafana). Cloud-managed services can reduce operational burden significantly.
Yes, but with considerations. GPU-based transformer models add 50-200ms latency per event. For true real-time processing, use optimized models (DistilBERT, TinyBERT) or ONNX runtime. Alternatively, batch events into micro-batches of 10-50 events for efficient GPU utilization. Simple rule-based sentiment or VADER can process thousands of events per second on CPU.
Conclusion
Real-time Reddit monitoring empowers organizations to respond instantly to brand mentions, emerging trends, and potential crises. The architecture we've built provides a solid foundation for production deployments.
Key takeaways from this guide:
- PRAW streaming provides a simple entry point for real-time data collection
- Message queues (Redis Streams, Kafka) enable reliable, scalable event processing
- Modular pipelines allow flexible filtering, enrichment, and analysis
- Alert systems with cooldowns and priorities prevent notification fatigue
- Metrics and monitoring ensure system health and performance visibility
For teams that want immediate results without infrastructure investment, reddapi.dev offers semantic search with built-in sentiment analysis, eliminating the need to build and maintain custom monitoring infrastructure.
Start with the code examples in this guide, or try reddapi.dev for instant access to Reddit insights with semantic search and AI-powered analysis.
Additional Resources
- reddapi.dev Semantic Search - Instant Reddit insights
- PRAW Streaming Documentation
- Redis Streams Guide
- Prometheus Monitoring